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ABSTRACT

The compressible laminar boundary layer equations are considered for
hypersonic flow around o slender body. The most important interaction (i.e.,
the boundary layer-inviscid interaction), is taken into account. The rongent
wedge formula for two dimensional bodies is used for the external pressure dis-
tribution. The boundary layer equations and the boundary conditions are trans-
formed into a familiar form by using some features of the transformations of
Howarth, Dorodnitsyn, Stewartson, and Mangler. A linear viscosity-temperature
law and Newtonian fluid approximations are introduced.

The formulation of the problem is general and is applicable for both two
dimensional and axisymmetric slender bodies. The assumption of a Prandfl number
of unity and of an isothermal body are not mandatory but are invoked here to
make the governing equations more tractable.

The solution of nonsimilar boundary layer equations is based on an inte=-
gration by the method of steepest descent. Inversion of series is necessary to
complete the integration. Because of the additional boundary condition at the
separation point, as well as the characteristics of the flow field near and down-
stream of the separation point, the analysis is carried out separately for the Mow
ahead of separation and for the flow near and downstream of ceparation. Since
the solution of nonsimilar boundary layer equations as well as tangent wedge
formulation is coupled, an iteration scheme is developed.

The pressure distribution, skin friction, displacement thickness and heat
transfer are computed for a flat plate in hypersonic flow. The calculations are




carried out for various wall conditions including heated plate and gas properties
to demonstrate the physical aspects of the problem. The results are in reasonably
good agreement with the available experimental ocbservations and anal ytical
solutions. It should be noted that the present results are computed without
specifying any particular free stream Mach number.

One may expect to encounter rarefied gas effects in those regions of the
flow possessing very sharp gradients (i.e., regions in which the velocity, pressure
or temperature change appreciably in the space of a few mean free paths re-
gardless of whether or not the absolute density of the gas flow is especially low).
In addition to this rarefied gas effect in the vicinity of the leading edge, the
merging of the shock wave and the boundary layer modifies the structure of the
flow field at the leading edge. Therefore, the present results are applicable

below the rarefaction parameter, V_ approximately equal to 0.15.
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SECTION 1
INTRODUCTION

According to the Prandtl's [1]boundary layer concept, one can divide
th flow field around a body into two regions. The region in which viscous forces
are important is confined to a thin layer (called the boundary !ayer) adjacent to
the body and to a thin wake behind it. The other regime is external to this
boundary layer where inertia forces play a dominant role in describing the flow
field.

Extensive discussion of the boundary layer theory exists in the literature
[2 through 10]. Even though the boundary layer equations are a simplified version
of Navier-Stokes equations, they are still a set of non-linear partial differential
equations. The complexity increases with the inclusion of compressibility,
pressure gradient, and heat transfer effects. Due to these difficulties, only a
very limited number of studies, numerical and aralytical, have been carried out
for specific cases at the present time. In the following, various techniques for
solving the ordinary boundary layer problems will be briefly described.

For flows over a fla" plate and stagnation point regions, similarity solu-
tions require the system to possess a Prandtl number of unity, linear viscosity=
temperature relation across the boundary layer, an isothermal surface and a
certain particular distribution of the free stream velocity. Von Karman-Pohlhausen's
integral method relaxes some of these restrictions. However, the method fails
rather dismally to predict the separation point for Schubauer's [11] experimentally

observed pressure distribution. Extensive studies of these integral methods were

1



made in References 12 through 16.

The concept of the combination of the integral method and similar solutions
was introduced in References 17 through 20. This approach requires the know-
ledge of similar solutions. Another method is based on the assumption of local
similarity [3, 20, and 21] where the derivatives with respect to the x-coordinate
are small compared to the derivatives with respect to the y=coordinate. Also the
terms which are functions of x are assumed to take on their local values.

A very limited number of solutions have been obtained for the non-
similar boundary layers. Cne approach is to replace the x derivatives with a
finite difference formula and then integrate the resulting total differential equations
by standard methods [23 through 26]. Since integration of coupled ordinary
differential equations with variable fluid properties is involved in an iteration
scheme, it requires considerable amount of computation time even on high speed
computers. The other approach is due to Meksyn (27 through 35] who used the
method of steepest descent in integroting the nonsimilar boundary layer equation
for incompressik'e flow. The method is quite simple to apply ar+ appears power-
ful. However, complete understanding of the convergence of the series is lacking.

Obtaining the solutions of boundary layer equations by finite diffcrence
methods has been the subject of much study in the recent literature [36 through
43). Since the governing partial differential equations are of parabolic type,
they can be solved stepwise downstream starting with the initial velocity, the
temperature profiles and specific boundary conditions. The derivatives in the
partial differential equations are ieplaced by difference formulas. In doing so,

it is quite common in the literature to replace the products of derivatives or



non-limear terms wit.  .car difference formulas in order to obtain simple linear
difference equations. In addition to this drawback, one has to depend on correct
initial profiles which may not be obtainoble in many applications.

The bodies traveling at hypersonic velocities experience not only first
order' effects (i.e., simple boundary layers) but also second order effects such as
those due to longitudinal curvature, transverse curvature, enthalpy gradient,
entropy gradient and dicplacement thickness. The essential difference between
the hypersonic viscous flow and the ordinary boundary layer flow is that the flow
immediately outside of the hypersonic boundary layer is greatly influenced by
the solution of the boundary layer equations. For instance, in the case of a
uniform stream flowing over a flat plate placed along the direction of the main
strearn, the pressure gradient along the plate can be neglected in an ordinary
boundary layer problem; but it must not be neglected in hypersonic viscous flows
problems because a significant flow deflection in the boundary layer producés a
curved shock in the external flow.

At hypersonic speeds, interactions of the boundary layer with the ex=-
ternal streom become more important than in subsonic and low supersonic flows;
they lead to more difficulties than in the usual compressible boundary layer
theory. The most important interaction on slender bodies is boundary layer-
inviscid interaction. This will be discussed more in detail in Sections Il and IV.
The problem of predicting the characteristics of a hypersonic laminar boundary
layer that interacts with the external flow field is solved by using the tangent

wedge formulation for the inviscid flow field and the method of steepest descent

for the viscous flow.



The problem of the boundary layer inviscid interaction on a flat plate
has been solvad by Blottner [39], Dewey (21], Mann and Bradley [22], and
Chan L20] among many others. Blottner, Dewey, and Chan used the tangent
wedge formula for the external pressure distribution. Bradley [22] adopted the
method of charocteristics for the external pressure distribution and a numerical
procedure for the integration of the exact boundary layer equations. Solutions
of this type are time consuming and too costly for engineering applications.
Blottner [39] used a finite differance technique to chtain the solution of the
boundary layer equations. Since an initial profile, which may not be available
for all problems, is needed for each dependent variable, he could not compute
the solution for a heated flat plate. Dewey [21] used the local similarity concept
whereas Chan [20] adopted a combination of similar soluticns and an integral
method

In this investigation, a method of analysis which was proposed by Jeng et
al [112] is employed for predicting the shear stress, pressure distribution, and heat
transfer coefficient for the hypersonic flow. The integration of nonsimilar boundary
layer equations is carried out by the method of steepest descert. The present
boundary layer solution is then applied to calculate the interaction problem in
hypersonic flows with the inviscid flow solutions.

The results of the flow field calculatiuns, shown graphically on Figs. 3
through 18, are described in Sections IV and V. A sufficient number of results
based on different wall temperatures and gas properties are presented to illustrate
the physical aspects of the problem. Typical results which are plotted versus a

hypersonic interaction parameter X are pressure distribution, skin friction,



displacement thickness, and heat tiansfer.
In the case of an adiabatic plate, the results are in good agreement
with the available experimental observations end analytical solutions. In

the case of a cold plate, the agieement is reasonably goed.



SECTION 11

MATHEMATICAL MODELING OF PHYSICAL SYSTEMS IN
COMPRESSIBLE LAMINAR BOUNDARY LAYERS

The ultimure objective of the present study is to integrate analytically
the equations of continuity, motion and energy for a hypersonic flow past two=
dimensional ond slender axisymmetrical bodies. It is impossible to obtain a
closed form solution to the general equations of motion and energy equation.
However, some simplifications can be realized for certain special cases and thus
yielding analytical solutions.

In this section compressible laminar boundary layer equations are con-
sidered for flows ove: two-dimensional or axisymmetrical slender bodies. In
addition, continuity, perfect gas law and viscosity model are introduced to
render a solution to the problem. Sufficient number of boundary conditions are
provided to complete the formulation. This boundary layer equations are non-
dimensionalized in such a way that one can seek asymptotic solutions by a weli-=
known method. The specially introduced dependent and independent variables
are due to Dorodnitsyn = Howarth = Stewartson = Meksyn's transformations,
which also contain the transformation used by Mangler [ 44 ] for axisymmetrical
boundary layers.

Various boundary layer parameters of interest are discussed. The most
important featurc of the boundary layer = inviscid interaction for hypersonic
flcws over slender bodies is introduced. The self-induced pressure interaction
between the viscous and the inviscid flows on a slender body moving at hyper-

sonic speed stems from the relatively large outward stream line deflection induced



by the thick boundary layer. At hypersonic speed, the deceleration of gas due
to viscosity in the bound ry i-ivar generates high temperature 1n this region. As
o result, the boundary layer in this region is rather thick, and its rate of growth
is propertional to the square of the Mach number for a given Reynolds number of
the.external flow. ihis thickening of the viscous layer thus deflects the external
flow significantly. At very high speeds, even small changes in the flow in-
clination produce large changes in pressure; and the pressure induced by the
thickening of the boundary layer, in turn, feeds kack into the viscous layer,
thus affecting its rate of growth. This effect is introduced through a tangent

wedge formula and an iteration scheme. Further details are given in Section III.

2.1 Dimensional Form of Co.npressil.ie Laminar Boundary Layer Equations

(a) Partial Differential Equatinns:

Consider the steady flow of a pérfecf gas over an axisymmetrical or two
dimensional body, using the intrinsic coordinate system (x,y) where x is measured
along the body surface from the stagnation poirt and y is measured along the
outward normal from the body surface. The flow of a compressible, viscous,
heat conducting fluid is mathematically deszribed by the continuity, Navier-
Stokes and energy equations in addition tc the equation of state, @ heat con-
ductivity law and a viscosity law. For flows at large Reynclds numbers or small
viscosity, invoking the usual assumption that the boundary layer thickness is
small compared to the longitudinal body radius of curvature and that the centri-
fugal forces are negligible, Prandtl has shown that the continuity, Navier=Stokes

and energy equations can be simpiified to the followi.:3 compressible laminar
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boundary layer equations:

continuity:
) i ) i
3% G * gy ) =0 @)
X = momentum:
ou du o _ 9p 9 du
Cuax +Cv-§7 Sx Sy (“-67) o 2)
y = momentum:
op . ‘
Ay 0 (z.3)
Energy:
(o2 e Dt Cv (e n=udBayf2e)’ 2 T
Y Ix Y% Iy ) T VTx THEY) Ty oy
(2.4)
Equation of State:
p = CRT (2.5)

where i = 0 for a two-dimensional flow and i = 1 for an axisymmetrical flow,
and r is the body radius from the axis of symmetry.

The above equations do not contain transverse curvature terms for axi-
symmetric flows (i.e., the body radius is independent of y). Since the present
analysis is intended for very slender bodies and flat plates, the transverse curva-
ture effect has not taken info accot

It should be noted also that the body forces are neglected in formulating

these equations.



®) Viscosity Model

The most well known formula for the viscosity of a gas from kinetic theory
of gases is Southerland's law. However, it is not uncommon in literature to use
another linear viscosity law which is of the following form because of its sim-

plicity and being capable of providing reasonable results.

w

if = A(—I—m) (2.6)

where A and W are constants
The linear viscosity model (i.e., with W taken as unity in Eq. (2.6))

is used in the following analysis.

2.2 Nondimensional Form of Boundary Layer Equations

The present study is concerned with laminar boundary layers in gases
flowing over a slender body at high velocities. This subsection is mainly devoted
to summarizing the procedure used for transforming the equations of the boundary
layer so that they be more amenabl¢ to asympfoﬁ; series expansion.

(@) Dependent and Independent Variables:

The two independent variables are:

2Y

L) T O
N y
() 2o, EUL\/A\»m L _%: v @0



The two dependent variables are:

X = \}2% £ f(8, ) (2.9)

h

s, n) = h’ -1 (2.10)

(o)

where hs is the local stagnation enthalpy, i.e.
= y
ho=h o+ (2.11)

The definition of the stream function (X )is given in the following subsection.

®b) Partial Differential Equations:
Since the requirement for the existence of a stream function is the con~

tinuity condition, its relation in terms of the velocity components u and v

from the continuity equation is

B V- e
e (L) YA - 2. 13)

These velocity components can be rewritten in terms of u modified stream

function f as

10



3 r o f
= (L—-) u- 1:, n ﬁ—} (2.15)
In addlition to the perfect gas iaw, an isentropic relation is assumed for

the fluid outside the boundary layer. These assumptions lead to the following

relations
c 2Y
- ] -1
Py/ Pa = <—;—> Y (2.16)
and
_ y=1 .2
To/‘i'] 1+ —— M, (2.17)

Since the temperature appears explicitly in a velocity relation v and
later in a density ratio, it is desirable to rearrange the dimensionless temperature

ratio in terms of f and S as shown below

T To cPT U2 u2 :
s e A P i TR (2.18)
] ] p o p o p 1

Using the definitions of the speed of sound (c% =Yy RT]), and the enthalpy

function S as well as the Eqs. (2.5), (2.14), and (2.17), Eq. (2.18) becomes

2
T . y-1 2 _y-1.2(3f
T (1+ 5 M] ) (S+1) 5 M‘ <an> (2.19)

Substitution of Eq. (2.19) into Eq. (2.15) yields the equation for the

transverse velocity

11
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3i /¢ 2Y v i
_ of L ® ) ® 3 r _ af
%“zg’é’%”[zg(?‘) (T) Y 7 3% (D) ']“'a—n‘}

Making use of the above relations, the momentum and energy equations after some

simplification reduce to the following form:

Momentum:
3 2 2 2 2
3%F 3% [ <ar>] <afaf afaf>
+ f +A|StHl~[—] P 28|l0— 5=~ —— ——] (2.21)
dna anz on an 3Eyn  of anz
Energy 2
2 | | M
1 %5 L35 L, (35 3 _ 95 af> Pr-1 (-
1 9S =g of _ 95 of ) _
Pr 3n2 N k?ﬁ' on  an 3§ Pr H%_IN]Z
2
2 3
5% of 3% .
on an’

where

cm
e 2 4 ( u,> 2.9
(.f’_)ul !

Several authors derived similar to the Eqs. (2.21) and (2.22). For example,
one can find in Chapter 8 of Hayes and Probstein [3] and Cohen and Reshotoko = 191.
One can also find momentum eauation similar to the Eq. (2.21) in Reference (35]
besides familiar momentum equation in incompressible flow field. However, one
should note that they are not exactly the same. They differ slightly either in the

definition of independent variables, dependent variables or nondimensionlization.

2.3 Boundary Conditions

Since slip and temperature jump at the surface are important near the

leading edge, the boundary layer flow is considered only after a small distance



from the leading edge. This will be discussed further in Section 1V .

The boundary condition on the velocity at the wall follows from the re-
quirement of no slip, and the surface temperature must satisfy the condition that
there is no heat transfer at the wall or it exhibits a specified distribution at the
wall:

u=v=0aty=0, (2.24)
and either g—-T- =0 or the surface temperature, Tw is a function of x only
y =¢

or independent of x. At the outer edge of the boundary layer, the values of

v and T are specified by the inviscid flow sulution. Henceat y = @

(2.25)

—
(|
-
o
=

po 2y

u

>

To avoid rarefied gas effects or low Reynolds number effects such as velocity slip
or temperature jump <;t the leading edge, an upper estimate of the validity of the
present analysis will be specified from the existing literature. This will be dis-
cussed in detail in Section IV.

Introducing the definitions of dependent and independent variables and
relations (2.14), (2.19), (2.20) into Eqs. (2.24) and (2.25), the physical

boundary conditions reduce to the following nondimensional form:

At m = 0
t=0, 7 0 (2.26)
. a m— .
und either 57 = 0 for insulated wall

or $= SW (given) for nonadiabatic plate.

13
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At e, 2

= land § = 0. | (2.27)

2.4 Boundary Layer Parameters

In the study of interactions between the stream and the immersed body,
one is likely to encounter the most important quantities such as viscous stress and
enthalpy. The objective of the present analysis is to dstermine the modified
stream function and the enthalpy function. Once these functions are determined,
it will be a simple matter to obtain any other parameter of the boundary layer.

(a) Displacement Thickness:

The boundary layer displacement thickness is defincd as

6 =L(l-§'%’~])dy (2.28)

The displacemeﬁt thickness indicates the distance by which the external
streamlines are shifted outwards owing to the formation of boundary layer. The
effective body is the sum of geometrical body and the displacement thickness.
Therefore, the displacement t‘hickness is necessary to determine the effective body
in a hypersonic flow where the interaction between the boundary layer and in-
viscid flow has strong influence on the external pressure distribution.

The physical definition of displacement thickness is further transformed

in terms of new dependent and indef.endent variables as shown bel ow

2
* ¢ I Coy=1 2,
o) =—CT-\’AV® 5 {L [(]"F )+—2—-M] (1-f )-S5
(1+ 1'2—'-Mf>] dn) (2.29)

where the prime (') denotes differentiation with respect to N . (Perfect gas law
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and Eq. (2.19) are used in achieving the above form). This can he further simplified

by integration by parts and upplying the boundary conditions. The result is

w -
. 2u ¢ _ 2 - y=-1 2
o "Avm‘,-——-—-—u] {1]+(y NmiL, - 1+ L M2 13} (2.30)

where ©
(1]
I =So f ndn
12“ ) f M dn (2.30a)
and ©
I3=.§) S ndn

b) Shear Stress

1
Assuming a Newtonian Fluid, the shear stress at the wall in cartesian

coordinates is
= -ég—
T <u Sy > y=0 (2.31)

From the definitior. >f M, Eq. (3.8), the partial differentiation of M with respect

to y yieids
i
d

u
oy <Tr'—) JZum g ]JA\)C,° | ‘e

(2.32)

Using Eq. (2.32), the viscosity model and the definition of the dependent variable

f, one obtains the shear stress at the wall as

=g N ({") 2 (---322*) (2.33)
v 2u,, 8 Pe an’/ m=0
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Eq. (2.33) is important in aerodynamic drag calculations and in establishing

separation point in regions of adverse pressure gradient.

(c) Heat Transfer

The heat transfer at the wall by conduction is given by

.- (k21
Qw (K 5—);-) y=0 (2.34)

Instead of introducing a model for thermal conductivity K which isa

function of temperature, another form of Eq. (2.34) may prove to be useful .

w

(¢ 1)
= | B9 P =

Moc

when Py = = Prandtl Number.

Using the viscosity-temperature relationship, the dependent and inde-
pendent variables as well as boundary conditions, Eq. (3.35) may be transformed
into the following form:

YA Y, Py

U, h
) 2 (3 n-0 e

Eq. (2.36) is useful in designing heat shields on various hypersonic vehicles

Q = -
w 2y 8§ Poo

as well as ascertaining the effect of heat transfer on separation point.

2.5 Pressure Distribution

It is intended to carry out the analysis on slender bodies with a sharp
leading edge. The interaction of the leading edge shock wave and the boundary
layer is important in hypersonic boundary layer flow. The presence of leading
edge shock wave is more significant because of the large outward stream line de-

flection caused by a thick boundary layer at hypersonic speeds. This is explained



in detail in Reference 3.

t is customary to divide the flow field into several regions as shown in
Fig. 1. The rarefied guos effects (such as slip flow and the shock structure) play
a major role i the leading edge tegion. This will be discussed in detail in
Section IV .

It is difficult to establish ihe b. . aries of these various regions. Oguchi
[45] gives an estimate of the upper houndary of strong irteraction region based
on wedge=-like flow. Since the thin shock wave assumption is involved, the
~ulidity is questionable. However, the ciperiments and the theory (46,47
which describe the merged luyer regime piovided as estimate of upstream limit
for the strong interaction regime. Therefore, the analysis presented herein is

applicable only for the flow downstream of this upstream limit.

(@) Tangent-Wedge Formula

A simple, approximate, inviscid method for obtaining surface pressure
distribution on two dimensional slender bodies at hypersonic speeds is the tangent
wedge approximation. The surface pressure at any point on a body at an arbi’ rary
angle of atfack is ‘gken to be equal to the pressure on @ wedge whose half angle
equals the local inclination angle of the streamline ' “ith respect to the free stream.
Similarly, tongent cone approximetions are provided for axisymmetric bodies.

The tangent wedge formula from Reference 3 (Eq. 7.3.1) is

[ ‘
P %
e RR 2V Y L B (2.37)

where 8 y is the angle of effective body shape.

17



For a normal shock, the pressure ratio is

Py
Peo

= 2 Y 2 - Y= ]
v T M oy (2.38)
For an oblique shock, the pressure ratic becomes

Py 2y 2 2. Yy~
o * TFT M, sin B"-;,-;T- (¢.39)

where B represents the cblique shock angle.
e a hypersonic flaw and very slender bodies (when B and 9] are small), Eq.

{2.39) con be approximated os

p L2 .
1 2y M2 2 B Y- (2.40)

A simple relation between B and 9] L48]is

Sin B Sin6
2 25 3 =21 2 '
Mo sin® B =1 = om M " (2.41)

For small values of 9] and large values of M_, such that M°°el >1, B must

also be small and hence Eq. (2.41) may be approximated as

A 2 2 Y+1> ] (
S S| - 2.42)
5, 7 (2 WE

Elimination of B between Eqs. (2.40) and (2.42) leads to the following pressure

distribution formula:

2
Py Y= 2y v+ 1 (YH ]
+ = —— M 8 % —— + - 2-43
me Y+ 1 #Y'fl ® ] 4 4) Mfef (2.43)

18
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Combination of Eqs. (2.37) and (2.43) yields the following simplified form for the

offective body shape

P] |
2 ) ,
M, el - Y(v+ 1) _- (2.44)
.f.'_ v Yo 1
Pa Y+1

() Boundary Layer - Inviscid Interaction
High temperatures and low de: sity exists in hypersonic boundary layers.
- These circumstances lead to large displacement thicknesses which in turn deflects
significantly the external inviscid flow. (Thisis iegligible in subsonic and low
supersonic speeds). If one inclures the slope of displacement thickness in addition
to the geometrical hody slope, the pressure disiribution obtained in this manner
will be appieciably different at hypersonic speeds from the pressure distribution
obtained on the actual geometrical body alone. Since the displacement thickness
is a function of the pressure distribution along the body and the pressure distribution
is a function of the effective body shape (i .e., geometrical body plus displacement
thickness), there is an interaction between the boundary layer and the external
flow. Even if one avoids the leading edge bluntness by giving a sharp nose, the
large displacement thickness may induce vorticity in the external inviscid field.
However, such a contribution is negligible in comparison with the boundary layer-
inviscid interaction at hypersonic speeds on flat plates and very slender bodies(3].
Two main approaches to the strong interaction problem are available.

One is Shen's assumption [49] , iater extended by Li and Nagamatsu [50] , that
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the edge of the boundary layer is also the shock induced by the thick boundary
layer. The second approach is by Lees [51 ond 52] in which the edge of the
boundary layer (or the displacement thickness) is taken as the boundary layer
of a new body. The effect of these differences in concept are further discussed
by Lees (51]. The second approach is used in the present analysis.

The effective body shape is derived in the last section as @ function of the
pressure distribution. This effective body shape and the displacement thickness

can be related as

5. =g, + .49 (2.45)

To non-dimensionilize thz displacement thickness and longitudinal

coordinate, let

* Ug O
A = ”—'5—'— (2.46)
AV M7
and _ AV ;
X = Umx Mco (2.47)
With these definitions, Eq. (2.45) reduces to
-3 *
X dA
g =5 - X 4f (2.48)
1 b 2M_ 4%




2]

where

= - 2 - Y=1 2

The integrals Iy 12, and 13 have been defined in Eq. (2.30(a)).

Substitution of Eq. (2.48) into Eq. (2.44) yields

3 * P -
a2 Ve

v+ 1)
‘/Pl . Y-
Po Yt

- *
If Eq. (2.50) is integrated with respect to X and the resulting 4 is

(2.50)

M

Nle

Ob-

o
>

then eliminated by the use of Eq. (2.49), one obtains a single integral equation

in the form
3 X P P1/ X
1 1 y=17 dX
4 -(— -1 +
Po Yy _3_'1,__ ASL[ (pu, )\' Poo v+l] E
Py % | yg+1)n? § Pr o Z Y 4k E
Vw0 % T
X -
d X
-9 0
b -
o MoM; § x°
Tu, - . . %
[ﬁx ) (")2'.3.'.. dx ]
S VPm L U 5('3
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SECTION 1II

SOLUTION OF BOUNDARY LAYER EQUATIONS

The solution of the boundary layer equations with appropriate boundary
conditions and boundary layer-inviscid interaction is the main concern of recent
interest. The complexity of the problem is increased with the inclusion of the
effects of compressibility, adverse pressure gradient and heat tronsfer. Momentum
and energy equations (Eqs. 2.21 and 2.22) are, furthermore, coupled. The
solution of these equations is as hard to come by as any other problem of signi-
ficance i fluid mechanics.

According to Prandtl, the velocity gradient is a rapidly decreasing function
across the boundary layer. It may be possible to represent the velocity gradient
with an exponential function. In the method of solution, the velocity in the
boundary layer is thus expressed as o definite integral of g rapidly decreasing
funcrion. Following Meksyn, the definite irtegral is evaluated by the method
of steepest descent which greatly simplifies the integration.

The main idea of the method is as follows: if the i..cegrand is a rapidly
decreasing function, 'the main contribution to the integral comes from the region
close to the stationary point of the integ~ =d. In doing so, the partial differential
equations (i.e., momentum and energy equations) are reduced to nonlinear total
differential equations which contain a () (i .e., 325/31‘? at 1 =0)and b(€)

(i-e., at N = 0j as dependent variables. The dependent variables "a

as.
on
and "b" can be determined by using the beundary conditions at tke edge of the

boundary layer. In the end, to bulance the number of equation; and the number



of unknowns (i.e., to use the tangent wedge or tangent cone formula effectively),
the integrals I 12, and 13 which appear in the displacement thickness are
evaluated. This type of analysis is done separately for both ordinary point and
separation point regions.

Considerable amount of work in the analysiz can be reduced if it is re=-
stricted to a Prandt! number of unity. In this case, dropping the last term, the

energy Eq. (2.22) becomes

2
i—;%—u-%%zzg 2 -8 i (3.1)
The momentum equation remains the same as before i.e.,
% . 9% o\ 2F 3% _ af 8
T3 f;;]-é— =-'-/\[S+l-(—5ﬁ-> ]+2§<3ﬁ- R - ;1-2->(3.2)

Besides the boundary conditions rmentioned earlier (Eqs. 2.26 and 2.27),

additional boundary condition at the separation point is

=0 (3.3)

and that a (8) is small near and downstream of the separation point. Hence, it
is necessary to carry the analysis separately for the flow ahead of separation and
for the flow near and downstream of separation.

To obtain the solution of Eqs. (3.1) and (3.2), one expands the modified
stream function f (€ , 1) and the dimensionless enthalpy function S (£, n)in

a power series of T as

23
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. ] ﬂm
- - [ 4 )
fFe ¥ m(5) (3.4)
m=2 m
and
. b n"
s =3 m (%) 3.5)
m=0 mi

where a and bm are functions of Sonly. The modified stream function f
(Eq. 3.4) satisfies the boundary conditions (Eq. 2.26) ot the wall . Since the
momentum and energy equations are coupled, the coefficients o and bm will
be coupled too.

Substitution of f(&,Nn), S (8, N) aswell as their derivatives into
Egs. (3.1) and (3.2) and equating equal powers of N on both sides of these

equations yieids for these coefficients as

=a(8)

92

ay = -A(1+ S

a, = -Ab

as = a’ (2A-1)+2%a a (3.6)
a, = o(1+sw)<4/\-b/\2-4§/\')

o) = 8anb -4 (1+5)246a7(1+5,)2-8a%b

+28 [3Aba ~5nab ~3abA +2AA (1+ s.) 2]

etc.,



and
b = Sw (boundary condition)
b, ®=b (8)

3.7)

b, = -ab+28(2ab -ba)

bs

bA(1+5,)+28[bA (1+5,)-3Ab (1+ 5]

etc.,
where primes denote differentiation with respect to § . These coefficients are
valid for the case of constant temperature, nonadiabatic walls. The assumption
of isothermal wall and Prandtl number of unity reduces considerable amounts of
algebra involved in the analysis. One can relax these assumptions by assigning
arbitrary Prandtl number and arbitrary surface temperature distribution without

introducing any undue difficulty. Moreover, these coefficients are applicable

for both ordinary point and separation point analyses.

3.1 Ordinary Point

The major problem in the solution of boundary layer equations consists in
satisfying the boundary condition at infinity. The coefficients derived in the
previous section contain two unknown parameters i.e., a )ond b (§). They
can be determined from the boundary condition at infinity. Further analysis is

concerned with the development of equations which describe the boundary
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.conditions at infinity. To do this, it will be necessary to integrate the mudified

stream function f and to invert the resulting series.

n
Let :
re) fdn
o
(3.8)
m
o O oM
ie@0, T’ﬂs > %_1
m=0

Since T begins with n3, the expression of M in T begins with T '/3. Hence,

® A m+ |
ne=g m T ("""3 ) (3.9)
m=0 m+ 1
or |
| = (m-Z)
dn= = ZO AmT 3 dT (3.10)
m= . .

Dividing Eq. (3.10)by T m;' ! and integrating the resulting expression using

Cauchy's residue theorem, the following result is obtained

(]
A= 2:13 S T (3 )dn 3.11)

where i = =1 . The integrations are carried out three times in the T plane

to dispose of the fractional powers of T once in the N plane.
The complex variable analysis enables one to show that Am is the co-

-1 -(f.":_l)
efficient of M~ in the expansion of T 3 /. Since

_(m+1 _ ® a n"
T (T)=n (m+!)<m;; -(':‘n:g l ) (3.12)



therefore, Am is the coefficient of N™ in the expression

_mtl _(m+ l\
- T o, 3
(mio “m Tf“) B <mEO W) &

ofter expanding Eq. (3.13) in series form. The following equations are obtained

for Am
1/3
Ao'(b/a)
a 5/3
Ay "'5% (:‘)
. 3 % 3 °§ :
A" 2 YT 3 8.14)
a a
a 7/3 a a 10/3-
R R s B N R o
g 3 ) 13/3
(24) ("&")

o 8/3 ) 0y 2 11/3 w0 /@
A4"§"'7‘61'(:) *‘2'9"(5!)(_:') * 9(413)
9% /6 & 220 ¢ %3 2 % (6 /s 770
<1 (&) 2 =)

4 17/3
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as= - 2 (F) (2) + 6(F) 5= () + o (5)
(29) () -2 (2) 3 (&) 2

............

(a) Momentum Equation
Equation (3.2) is a nonlinear and nonhomogeneous partial differential
equation. Replacing the dependent variables f and S in the right=hand=side

of Eq. (3.2) by the use of Eqs. (3.4) and (3.5) yields

3 2

2Lk 2l = p(5,m) (3.15)
an an
where
® bm'ﬂm ® ® a o ntm=2
,n)= -A +1-% %
P {5m) L-o nl me2 aez @DT TEOTT ]
o a
@® [ +m=2 (-] ) n
+28 I T _ . " -F 3
["52 m=2 (n l)l (m ])l n=2 m=2 nl
o ntm=2
W n (3.16)



Multiplying Eq. (3.15) by an integration factor, e T, vihere 7T is

defined in Eq. (3.8) and integrating with respect to N rasults in

9 n

d%F

— -7, 4 PE, d 3.1
an2 exp (= %) [0()+§ €, MNexp(T) n]( 7)

The appropriate conditions at the solid boundary are used to cbtain the above
form.

To integrate Eq. (3.17), let

n B oM
ca-o(g)+§ P(&M) exp(T) dn=§ L 3.18)
m=0

The coefficients Bm in Eq. (3.18) may be obtained by substituting Eqs. (3.4)
and (3.8) into Eq. (3.17) and equating equal powers of M on either side of Eq.

(3.17). The first six coefficients are listed below

B, = -A(1+5 )
B, = -bA
B, = 2(a’A+8a a) (3.19)

B, = 6a 03/\+4§a o:;-o/\(l-i-sw)

85 - -b4/\+6a§ A+ 8004/\+6§a a4+4§aaa3

29
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-48%a 04-4ob/‘.-03'\f“’5w)

Integration of Eq. (3.17) with respect to N yields the following ro-wlt:

n
of
'S'ﬁ'- S .xp(-7)¢':—:'— dT (8-20)
o
To further simplify the above integral, let
dn -2/3 m/3
g7 "7 z dm T (3.21)
m=0
or
an
“’TF d7 =d ///—-‘-’-;‘-—-3(2ni)dm (3.22)
3 (m+1) m

T

Here, the integration is carried out in @ manner as described in Subsection 3.1.

Therefore, dm is one=third of the coefficient of ’n‘l in the expression

- + 1%
T 1/3 (m+ 1) expanded in ascending powers of N, i.e., dm is one~third

of the coefficient of N™ in the expression
3

“1/3(m+1) 82n2 B,
) Bo‘"B]'ﬂ"‘ + 3 +>

2
(c°+¢]n+c2n +... 57

The first six coefficients of Eq. (3.21) are summorized below.
-1/3

B
d"—a-e-c

0 o
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=1 )_ 4 7/3 , 28 - 10/3_ 140
3 { Bo3c * o B, ccc 81
Sp oo 198
[« <)
_ 4 7/3 . 14 2 -10/3_2 -7/3
3 B¢ =5 By % 382¢%%
B
¢ c°4/3} (3..3)

5 . p 83,20 2, N5, LN

=1 ). 5 20
3{ 3 ©4° % 9~ “2 % % 13

s~ VB 220 2 . -WB L 770 4, -17/3

oo 27 ©1 €2 %% % 243 1 70 o
5 -8/3 . 40 -11/3_ 220 3 - 14/3
3 <38 P S181¢, =i <1 &%
.5 - 8/3 10 2 -1R _ 5 -8/3
% S28% T 5 ¢y Bye, 8 189
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- - -3 -4 -4 _ 2 -5
d5 —5—{( 2c5c° + 6c'c4c° +6c2c3c° 12c] 3 ¢,

2 -5 3 -6 -7 -3
-12c2clc° + 2°cl°2°o +6c?co )B°+ (-2¢:4c° +3c§

-4 4 _ .2 -5 _ 4 <6 -3
€, +6c'c3c:° !2c|c2c°+5c, ¢, )8]+(-2c3co+

B B
-4 3 -5 2 -3 2 -4, B
6c]c2c° 4°lco T"'( 2c2co +3clc° )——6

Substituting Eq. (3.21) into Eq. (3.20) and extending t!~ upper limit of integration

to infinity, one obtains boundary condition ut ii-e edge of the boundary layer as

d f otx 2 m+ 1y _
= (8,=) mio d T ( 3 ) 1 (3.24)

where the symbol T stands for gamma function.

b) Energy Equation

Equation (3.1) is a linear, nonhcmogeneous partial differential equation.
The procedure for the integration of Eq. (3.1) is the same as described in Sub-
section 3.1 {3}

Substituting Eqs. (3.4) and (3.5) into the right~hand=side of Eq. (3.1)

yields



2
3°S 9§
—_— t f === P (§,n)
arF on e
where
P (E,n)= 25[ g g o L. nmin-l (3.25)
e 20 m=0 (-1l  “ml
x [ -] G‘
-2 2 m n n n+m-l]
m=l n=2 (m=1)1 nl
Using the same integrating factor and integrating Eq. (3.25), one obtains
n
-}
e 1 [b@+ (or (mp(am an]  G26)
°
To facilitate further integration, let, as before,
" X
v, (8, n)= S exp (T)P E,n)dn= b —'%5,1 o (3.27)
m=0
o

Substituting Eqs. (3.5), (3.8) , and (3.27) into Eq. (3.26) and equating equal

powers of T on both sides results in the following definitions for Xn

¥ =0
X, =0
x2=0
(3.28)
X3 = 28(2ab'~ba’)
Xq = 2§(303b -bo3).
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After integrating once, Eq. (3.26) becomes

n
s(,n) = g éxp (= T) CPe-é-’-,?- dT+ Sw+b§ exp (-1')—3-2— dT
° ° (3.29)
Again, let
o, - = 7'2/3'“:% D_ T m/3 (3.30)
where the coefficients Dm are
DO =0
D] =0
D, = 0
D, = }l-g- c;4/3 (3.31)
0, =+ [ x °1°;8/3*"';%"' 5]
Ds =’3]'.’ ['Z(Zs‘1 (-2cyc, *3¢) °4)"')'(1'"21" )<y
¥ :(250 °;2]
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The information needed for the evaluation of the second integral in Eq.
(3.29) has been made available in Subsection 3.1. After integration the result

obtained is given below.

n
dn 1 2 m+ |
§ dT 3 m=0 m 3 > @

where Am 's are defined in Eq. (3.14).

Therefore, using the boundary conditions for the enthalpy function §,

Eq- (3.29) becomes
-1

e (a0t ()[4, aresfom

E¢s. (3.24) and (3.32) are coupled together. They contain two unknown parameters

a (§)and b (&) and their derivatives. The solutions obtained and the transform-
ations given above are only valid within a finite radius of convergence of . The
range of 7 in the solution has been extended t. infinity because of the lack of
exact knowledge of the edge of th.: boundary layer. For this reason, the series
expansions become divergent and ‘hey have t¢ be summed by Euler's transformation

as shown in Section IV.

(c) Displacement Thicikness

It is apparent from the above discussion that the Egs. (3.24) and (3.32)
contain not only the unknown parameters a (§) and b (€) but also the pressure
gradient term A (€). If the pressure distribution is known for low speed flows \s\

either by experiment or by inviscid flow theory, it is a simple matter to determine
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the unknowns "a" and 'b” from the two Eqs. (3.24) and (3.32). However,
this is not the case in hypersonic flow. Here, the presence of various interactions
(such as pressure interaction, vorticity interaction, etc.,) adds another unknown
pressure gradient parameter A (8) , hence another equation is necessary to balance
the number of unknowns and the number of equations. This additional equation
could be either the tangent wedge formula for the two=-dimensional case (or the
tangent cone formula for the axisymmetric case) or the use of the method of
characieristics. Since the tangent wedge formula is relatively simple and at the
saine time provides enough accuracy for very slender bodies [3,39), this formula
has been used in this investigation.

The tangent wedge formula is derived in .Secﬁon I1 (Eq. (2.51)). However,
Eqs. (2.51) and (2.49) contain three unknown integrals, defined in Eq. (2.30(a)).
These integrals will row be evaluated.

Substituting Eq. (3.17) and (3.18) into the definition of the integral I] ,

one obtains
¢ d
I]’ S exp(-T)Cp—a-g- ndr | (3.33)
o

To simplify this integral, let

dn

-2/3 = m/3
37 s T z D1 7

m= m

¢ n

With a procedure similar to that used in Subsection 3.1(a), one obtains the

following for D1 :
m



. | - 2/3
Dl, = =58, <,
| -2 -1
D1y = (=B cp¢y * Bycy )
. 4 -7/3 14 2 -10/3)
Dl3 3 {Bo( 3 2% * 7 %1% /
-_‘?’__B c. ¢ 7/3+ 82 c"4/3
3 171 2 o
. ] - -8/3 , 40 -11/3 _ 220
D 14 -3—{ BO (5/3 c3 co + T cl 62 Co -"—""8]
3 -14/3 (,_ 5 -8/3 20
°1% )+Bl "3 2% Ty
2 1By 5 ., _ -8,
°1 % ) 6 "2 %1% 6
(3.34)
c-5/3}
(o]
D1 '-]—B (-2c c-+3c2c-4+6ccc - 12¢
5 3 o 4 2 “o 1 “3 1
5 4 -6 ) 3
c2c +5c]c )+Bl(2c3°o
B
-4 _ S ), 2 (-
+6c] ¢y € 4c‘ <o ) + 5 2c2
B B
-3 2 -4 3 -3 4 =2
c°+3c] co) 3 clco+-§Tco:

......
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It is now straightforward matter to write down the final form of Eq. (3.33) as

n=% o1 r (J"-%L> (3.35)

m=]

To evaluate the integral 12 , one may write

- - of dn
12 S exp (=T) @ 5 1 g dT (3.36)
o
For further simplification, let
o n 40 a3 g pp (3.37)
on dr m=2 m

The following definitions for D2m are cbtained by following the same procedure

as described in Subsection 3.1{a).

Bo
D2=-—3—oc

B a B,a
=(_ 03 _ 1 -4/3 _ 4 ~7/3
I:)23 ( 6 3 ) co 9 Bc 9y %
0y = 0 <B a, . By a; N 820>c_5/3 5
4 3 6 2 2 (<) 3 1

20 2 - n/s}
¥ c; 8o <, (3.38)
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D2 -_:_}_{“ [_ A L X (cz+2c]c3>c;13/3

6 o 3 4 o 2
B a
455 2 -1/3 . 1820 4 =-19/3 (03 | >
7 1% % * =3 %1 % ]* 7 * By
(7 . =108 70 -13/3 _ 455 3 -16/3>
( 3 3% %% 81 €1 % ¥
<
(%"4 L e B2 )(_ 7 . -10/3 , 35 2 -13/3
6 2 2 2 o "9 "1
B a B,a B.a B.o B o
_ 7 -10/3 05 14 2°3 3) 06
3 %1% (24 A i S *(‘i"‘zo

1*]
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Therefore, Eq. (3.36) reduces to

=% oz, (%) ©-39)

Substitution of Eqs. (3.26) and (3.27) into the definition of the integral

I3 leads to
= -1) » 790
;= § exp (-1) » 0 gL ar (3.40)
(o)

To simplify further, let

-2/3
—d-‘rl = =3 m/3 I
@ ngr =T Iy 13.41)

The coefficients D3m are obtained in o similar way,

= -2/3
D3] 3 Xo co
X
= - _9 -2
D32 3 c]co
X
. o _ 4 -7/3 14 2 -10/3
D33 = —— < 3T%% tTT9 % >

= L - -8/3 , 40 __ -11/3_ 220 3
D3 3 [Xo( 3% % Y9 1%% g1
(3.42)

14/3 >+ l(-z— c-5/3]

o



Equation (3.40) now becomes

l3 mi] D3m r —r) (3.43,
With the integrals ll ’ 12 ’ 13 evaluated, one can now make use of the
pressure distribution formula. The three unknowns a (£), b(8) and A (&)
can be determined by simultaneously solving Eqs. (3.24) and (3.32) and the

pressure distribution formula.

3.2 Separation Point

The difference between the separation point and ordinary point is the fact

X

2
on
stream of the separation point. Because of this separate analyses are required for

that the value of a () (i .e., at M = 0) is small near and down=
each region. The major difference between the ordinary point analysis ond the
separation point analysis lies in the inversion of the series in order to integrate
the energy and momentum equations (i.e., Eqs. (3.1) and (3.2) respectively),

the additional condition at the separation point is

2%
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a"——-z—’Oat‘n“O (3.44)
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whence f (5, n) stacts with the term 1|3.
Since the expressions will be applied to the flow downstream of separation,

let

n
F - S fdn (3.45)
o
or 3
exp (=F) = exp -(32-) exp (-'rs)
where
a ﬂ4 Q Tls a 1’16
T w2 s L L3 .
S 41 51 6l e
- n4 E °n +3 nn (3 46)
n=0 h+ 4yl )

One can expand the sxponential term in series as

9
exp -ﬂa— -]-ana +-9-?-n6- 031“ +
6 6 72 1296 "o
(3.47)
Inverting the series of Eq. (3.46) as described in Subsection 3.1, one
arrives at the following results:
® AS m+]
o ‘ m
) = L =T s (T) (3.48)
m=0
where y
a, -~ 1/4
- 3
as, = o)
- 3/2
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o 2 o o -17/4 ooss 1 9 4 o -21/4
<“T27)') 720 (24) B3, <120>(24)

. . k4 L -

It is to be noted thar the coefficients

"am " are already obtained in Se. ion

Il (see Eq. (3.6)). The coefficients ASm do not i:ontain the unknown parameter

@ (&) in the denominator. Thus, the singularity is avoided.

(@) Momentum Equation

The integration of the momentum Eq. (3.2) will remain the same up to the

development of Eq. (3.19) as in Subsection 3.1(a). Since there is difference be-

tween T and T S/ the counterpart of Eq. (3.17) for the separation problem is

2 3 2 6
of o < - 8N an_ . ) -
anz o \1 Z + 55 c v exp ( 'rs) (8.50)
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After integrated once, Eq. (3.50) becomes

n
3 2.6
af - . an an- dan
S
(<)
(3.51)
For simplification, let
ans o2 P m/4 3.52)
¢ - % + 79 ~ . e —1-'- =T PN dS T
S m=0 "

Similar to the procedure used in the ordinary point anulyses, one can

identify the coefficients dSrﬂ as

B Q -1/4
dso N c‘; ( 23
1 ¢ % 3 2 3 V2
]
5 7 '4‘["'5 (z5) % (&) + bl
-7/4 2 ~11/4
a a (o] a
o0 F 1 [-3 () ) B G 6D
o o ~7/4 B, -3/4}
3 4\ (93 3 |
-7 Y (120)<24) Y7 (‘i'4‘>
B° LA 03 =2 ay 05 03 =3
d5; = - [' 5000 (35) * 2 <120) (735) (52)
-2 2 -3

3 -4 3
-(130) (27) ]+ 14]' [' () () (27) |
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-2 -1
a B, aB
+ (3=

B a a
2 ¢ 9%\ % 3
"B \120)(24) 240)(24)

/4 2
] 3 45 (/%
d5 T{ B [ T <4oazo) ts2) * % ("??)6/ T2

oy o > g -13/4 . 0 24 o -1//4
, 585 5 3
(m) Goag) () - () 7 ) -
-21/4 . N
8 G GE b [ 4 GG
-13/4 3 - 17/4
5 (9 195 /%% 3
B (P -2 )]
-9/4 2 -13/4
B a, - a
2 5 [ % 3 45 (9%
T ['T &720 “24 +'§'2'(T2'5)(24/ ]

RN A TOR RS SRR ATENS

....... (3.53)
If the upper limit of integration is extended to infinity, Eq. (3.51) becomes
d = $ + l
_a_f_(g,m) = ("' (3.54)
n m-O

therefore, this is the boundary condition at the edge of the boundary layer near and

downstream of the separation point.
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b) Energy Equation
Following the same procedure as used in Subsection 3.1 () up to the

development of Zq. (3.28), Eq. (3.1) becomes

-T 3 2.6
d S
H e (V- 5= + &= .. ) es, 3-55)
® Xm m
whera ®S = b+ X —_—
e m!

m=0
and X are defined in Eq. (3.28).

It is to be noted that the above equation is obtained ofter replacing the
expression for T in Eq. (3.26) with an equivalent definition from Eqs. (3.45)
and (3.47).

Integrating oncz, Eq. (3.55) becomes

h aﬂ3 02116 dn
s(8,m) = § e (1) (-2« 72 " "’Se]'a‘v's dTs

©

(3.55)
To simplify the integral in Eq. (3.56), let
3 2.6 -3/4 m/4
- an an_. dan . s

os, (1- 2 + ... ) G =r Eoos 6w

With o procedure similar to that used in Subsection 3.1 (a), one obtains

the coefficients DSm as

a -1/4
) 3
DS, = by ("‘24"'

_eme il
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DS) * = by (120 ) (_T)

-11/4

os, =[5 - 3 (720)( (120> ( ) ]

-2 -3
_Ib % % !
o3 ['T - 0 (ap) 2(]2\.)(720)( 24 -

+

~9/4
o 5 7 °3 45 | (%5
DS4 = -Z-{ b [" 7 (Z"O‘[gzo )( 24) V. <720>

5 -13/4 -17/4
4 585 5
"60 (5040 ( ]' 128 (120) <720>(

-21/4 ) -9/4
, 3315 ) ( 5 [Xgm ) 9y (23)
2048 \ 120 7\ ¢ 200 \"7%4
)(,4 (03 —5/4} |
7R (3.58)

oooooo

If the upper limit of integrafion is extended to infinity, Eq. (3.56) reduces
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= 7 mrly) =
s(s,=)=: Ds T (%3—=) =0 (3.59)
m=0
This is the boundary condition for the enthalpy function at the edge of the boundary

layer.

(c) Displacement Thickness
The main task here is to develop the expressions for the integrals Iy
12 » and 13- Since the procedure is essentially the same as that described in

Subsection 3.1 (c), the definition of these integrals and the end results are

given below.

or
- 8 m+1]
=2 st T (R
m=]
wliere -1/2

a a, =2 a 2,0 3
DSl = %{Bo[- 735 (30) * (70) (20 ]
=2 -1
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a B,-4a8B a
3 4 ] 3
(B, M () } 6.6,
efc.,
@ 3 27‘6
-T _ an a - of dn
IZ'SQ sw(l 5 * 72 )""an" dedS
o
(3.62)
or
@ 1
L =% 42 T <m+ )
2 m=2 m ¢
where
] ay -3/4
0522 il o Bo ° (_27>
-2 -1

. as o ~9/4 - 1% 2 o -13/4
DS2, = -;1-{800 [' + () (30 + % (w) (0
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B B B B ~11/4
[—z;i *":4 * 2;'3 * "3';"'] ‘rfo'('f%é ¥
7/4

and
@ -T 3 26
- 5 - en.,an _ an
I § e * @5, (' ) )ndfs dTe
(3.64)
or
- 3 mt 1
1, i DS3 T ( 7 )
m=1
where -
. 1/2
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a a., ~7/4
053, = - <% (-135) b (¢

-13/4 3 -17/4

(#) - Bm@E FEDR ]

-5/2 2

D”s’l‘{"’['%(w:z?o)(:j) ¥ ‘lei<(7:g) +2
o o . 72 o 2 -9/2
(Ti%)( 5030) ><T?s‘) B "135‘ 120) 720 24)
~11/2 Y. = ab e "5/2
?;3(120)(24) ]' g < 36° >'l'a§4'6(2¢31)
-3/2
— (:2%- } (3.65)

etc.,



The integrals l] ’ 12 , and 13 are expressed in terms of the same unknowns
a (), b(8) and A(S) . These unknowns can be determined by simultaneously

solving Eqs. (3.54) and (3.59) and the pressure distribution formula.
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SECTION 1V

NUMERICAL SOLUTIONS FOR A FLAT PLATE

It has been recognized for a long time that boundary layer theory is in-
adequate in the immediate neighborhood of the sharp leading edge of a flat plate.
Almost two decades ago, Becker (53] drew interest to this problem when he pub~
lished data showing the surface pressure much above the predictions of compress-
ible boundary layer theory.

Very few reviews of the problem exist. Hayes and Probstein [3] gave o
comprehensive review of the inviscid=viscous interaction phenomena. Later,

Jain and Li [54] reviewed the departures that occur from strong interaction theory,
both in experimental and theoretical terms. Recently, Pan and Probstein [55]
briefly reviewed the entire problem of the viscous interaction for all the flow
regimes shown in Fig. 1. Additionally, Charwat [56] has given a brief summary
of near free molecule flow problems.

The shock angles indicate that, for Rankine=Hugoniot conditions, the
pressure should continue to rise as the leading edge is approached, provided
the pressure does not vary with the coordinate normal to the body surface. This
is contradicted by pressure measurements which show a slight drop near the leading
edge. Therefore, ihe flow near the leading edge does not have the Rankine=
Hugoniot shock-layer structure.

To establish the region of validity of the present analysis, the flow field
classification and the available literature are discussed in Subsection 1. The

iteration scheme employed in the solution of the coupled equations is explored
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in Subsaction 2. Numerical results for various problems of the present day

interesr are given in Subsections 3, 4, and 5.

4.1 Classificction of Flow Field

Hypersonic flow over a slender body with a sharp leading edge provided
o challenging physical example of transition from microscopic kinetic theory to
macroscopic, continuum gasdynamics. The general flow models used in the
presently available analytical treatments of the sharp leading edge problem are
discussed below by dividing the flow field into several regions (Fig. 1). Far
downstream on a flat plate immersed in a hypersonic flow, the boundary layer
phenomena are adequately described by compressible boundary layer theory.
Upstream of this, towards the leading edge of the plate, the weak interaction
region is encountered [3, 57 through 63]). Here the viscous layer causes a per=
turbation of the inviscid flow field because of the ¢ffect of the boundary layer
displacement. In that case, although surface pressures and skin friction are
affected, coupling between shock and boundary layer has not become significant.

Upstream of this region, there is a strong interaction region [21, 22, 51,
64 through 71]. Here, the developments of both inviscid and viscous flows are
coupled. The distinctions between the strong and weak interaction regions are
based on the relative importance of the effects of the shock strength and of the
boundary layer displacement. In both regions, the shock wave is assumed to be
thin and an inviscid region separates the shock from the outer edge of the
boundary layer. A tabulated comparison of the various theoretical analyses
applicable to the strong interaction region are given in Moulic and Maslach [72].

The results of the strong interaction solutions apply in general for values of the



interaction parameter X much greater than unity. On the other hand, the
results of the weak interaction sol uti;ns are applicable for X much less than
unity. There is a transition region in between the strong and weak interaction
regions. Typical analytical results are plotted in Fig. 2. From this figure, it
is clear that bridging the gap between these two asymptotic solutions is not an
easy task. A regime exists upstream of the strong interaction in which there is
present strong interaction between boundary layer and inviscid flow in additior.
to slip conditions at the body surface. It is assumed that there is still o distinct
inviscid layer [ 73 through 77] separating the thin shock wave and the boundary
layer, but the significant rarefaction phenomenon accounting for departures
from viscous interaction theory is assumed to be velocity slip and temperature
jump at the wall. The next region upstream is the viscous layer region (45, 78
through 82], which is characterized by the merge of the thin shock wave with o
fully developed viscous shock layer. In this region, the boundary layer is
assumed to extend from the pliate to the downstream surface of the shock layer.
The next region upstream of the viscous layer is the merged layer (55,
83 threugh 86]. In this merged region, the shock wave is still merged with the
completely viscous shock layer, bur the shock is so thick that the jump conditions
across the shock must be modified. McCroskey, Bogdonoff, and McDougal [90]
have cbserved large reductions in the density ratio in the merged regime as the
- leading eélge is approached. This implies reduced pressure immediately behind
the st.ack, even though the shock angle is increasing. This may indicate that the

shock structure is the dominant mechanism upstream of the strong interaction

regime.
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Upstream of the merged layer, molecular treatments of the flow are
encountered in the near-free (56, 91 through 95] and free molecule fl:. v regions
(3, 46, 63, 96 through 98]. However, recent experiments (46, 89, 99] cast doubt
on the existence of a free molecular flow region.

It is generally rocognizod that strong interaction theory fails to predict
the behavior of the flow very near the leading edge. The determination of the
actual point of departure from strong interaction was considered by Becker and
Boylan [46]. They indicate that the strong interaction theory appears to fail in
the range 0.1 5V-° £0.3 as suggested by Talbot [47]. They also indicate that
the onset of merging of shock and boundary layer corresponds to initial departures
of Py /P, from strong interaction theory. This has been observed at V, ~0. 15.

Since the viscous interaction parameter X is equal to the product of the
square of free stream Mach number and the rarefaction parameter V. , the
strong influence of Mach number on the initial departure from strong interaction
theory can be cbtained in terms of X as 15 and 93.75 for Mach numbers 10 and
25 respectively if Vm = 0.15. Following this, if the criterion for strong inter-
action is X 2 10, then strong interaction will not exist until M_ 28. There-

fore, for lower Mach numbers, the merged layer regime may directly extend to the

weak interaction regime.

4.2 Numerical Scheme

The equations which are to be solved numerically are summarized here
for convenient reference. They are taken from Section III, and are specialized

for a flat plate.
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‘B dmr("%—l)'l (4.1)

be[-s-2 Dmr‘(ﬂ-;—l) + £ Amr('%—')] 4.2)

7w Ve % B -2
- |%
[‘f Py dx]
d Py Yy X3

where dm, Dm and Il are defined in Section IlI. Further simplifications cen

be foreseen from the following isentropic relationship:

y=17%
)5
+

—= = (4.4)

For M, = 10, Y=1.4, a maximum pressure ratio (j, /P ) of 11 may exist
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for on adiabatic plate. Therefore, the niaximum error in assuming uy approximarely

equal to u_ is about 2.5% at the leading edge and the error approaches zero ;.
the downstream .

For convenience, let in Eq. (4.3)

—d

(4.5)

Thus,



.. P/l

[ JPl/Pa""%.'!f
7 &=

The assumption of u; =~ u_ is justified because of the approximate re-

dz

Po

= M
N

(4.6)

presentation of inviscid pressure distribution by the tangent wedge formula.
Equations (4.1), (4.2), and (4.6) implicitly contain three unknowns,
nomely, a, b, and A as well as their derivatives. These equations, containing
highly divergent series, are not only nonlinear but also are coupled. There is
no direct way of solving them with any existing technique. Therefore, one has
to depend on an iteration scheme.
The definition of A is rewritten in terms of the new coordinate z in

Appendix B. Similarly, the following relations are specialized for a flat plate

as functions of z.

and

db - = db E
-4 - » d 4 » 9
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The usual approaches to the solution of a set of nonlinear differentic!
equations are either to integrate them numerically by Runge=-Kutta integration
technique, or to linearize the equations by Taylor's series expansion and then
solve the linearized set by standard methods such as subdomain method [100]
or Pade approximation [101). However, these methods are not feasible for the
obove set of equations.

It is important to examine the series involved before applying any method
for the solution of the equations. This can be done easily by neglecting the
primed quantities in the first attempt. A typical series obtained in the solution

of these equations is given below.

1.5341 - 1.1829 + 0.0105 + 0.7974 + 0.2694 + . . .

The series is divergent. One has to apply the Euler transformation to sum these
series, the procedure of which is given in Appendix C. As explained there, the
Euler transformation should be applied in such a way that the best convergence
and the least last term is obtained. One can cbtain the following form ofter
applying the Euler transformation to the above series beginning with the second

term.
'-534] - 0059]4 - 00293] - 000456+ 0009‘44 + .0

Since the series is still divergent, «ne can obtain the following form by

applying the Euler iransformation to the last two terms.
1.5341 - 0.5914 - 0.2931 - 0.0228 + 0.0122 + . . .

Now the series looks reasonably convergent. The experience here confirms the

N
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observation of Meksyn [35] that it is not advisable to apply Euler transformation
more than twice. The reason is that the convergence rate decreases as more
Euler transformotions are applied. Therefore, it Is better to use as few trans=
formations as possible. There is no unique way of summing these series. They
differ slightly from one type of transformation to another. The type of trans=
formation to be employed should be decided by trial and error in such o way that
the best convergence and the least last term requirement will be met for the some
number of tronsformations.

Fortunately, the first three terms in the series expressions (4.1), (4.2)
as well as in the integrals ll' 12, and 13 do not contaln any derivatives. The
next three terms in all these expressions contain only first derivatives. Most of
the contribution in summing these series comes from the first few terms. Therefore,
this present method has the advantage over the methods of finite difference in
that even if a slight error is introduced into the last few terms by a finite difference
representation, it will not significantly alter the net result.

Besidos Meksyn, Hayday and Bowles [102, 103] investigated the solution
of equations for stagnation point flows by using different number of terms. They
concluded that the results obtained by using more than five terms differed little
from the results using only five terms. However, Meksyn concluded that at
least seven terms should be used for flows near the separaticn point. Since the
numerical solutions presented in this study are applicable to a flat plate, six
terms are retained in Eqs. (4.1) and (4.2). Five terms are used for the integrals

I][ 12' and l3-
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The expression for 1l contains three quantities. The second and third
quantities are directly proportional to the square of Mach number. Since the
onalysis presented here is for hypersonic flow, it is possible to drop the first
term (i .e., l‘) without loss of much oﬁcuracy.

Similarity solutions are the exact solutions for a physical preblem ot the
stagnation point. Lees [104] cbtained the pressure gradient parameter for similar

hypersonic boundery layers as

A B e (4. J;

This is used for starting the numerical computations near to the leading edge.
Iteration schemes for cbtaining values for the three unknowns (i .e., a,
b, and A or p_/p, ) will be described below. Because of the nonlinearity of
the equations, and the questions of convergence of the iterction scheme employed,
it should be emphasized that no hard and fast rules can be laid down for the
establishment of stable results.
Equation (4.6) is an implicit integral equation for the pressure ratio.
An iterative scheme for its solution follows. An approximate value for the pressure
ratio on the right hand side of Eq. (4.6) will be assumed and a new value will
be computed by performing the two integrations numerically. The new value
will be used in the integrands and the procedure will be repeated until the
assumed and the calculated results agree within the tolerance limits set up. The
results show that only three iterations are required for three digit accuracy. To
start the iteraiion process, the initial estimate for py / P, from strong interaction

theory may be used. The pressure ratio iz expunded into asymptotic series in

63



terms of the viscous interaction parameter for the leoding edge strong interaction

region as

‘pes" sdgi"'bg (4.”)

The coefficients &, and %; can be cbtained by substituting Eq. (4.11)

into Eq. (4.6) and equating equal powers of X on either side, resulting

3 :
= —— Yy (y+ ) {yv-11u
* 2\/2 J

and (4.12)
e
e

To obtain an initial estimate for the iteration process, ~ne begins with
the value of Il determined by Eq. (4.10). The vclue of 1 thus determined yields
a value for a, from Eq. (4.12) which, in turn, gives an initial estimate for p;/pm
from Eq. (4.11). For the calculations of the other quantities needed, one first
drops all the primed quantities in their series representation (i.e., neglecting fheil;

g€ dependence in the formulation], what remains are the similarity results for the

quantities concerned.

Equation (4.2) is an implicit equation for the evaluation of the parameter
b. The iteration scheme operates on the <ame principle just described. Here
also, an initial estimate of b is needed. This can be set equal to zero. The
result converges to the desired accuracy in three or four iterations. The series

in the denominator of the right-hand-side of Eq. (4.2) converges without the



need of the Euler transformation. However, for extremely cold wall conditions,
the Euler transformation may be desirable.

Mueller's iterctive technique is used to find the parameter a (& ) from
Eq. (4.1). Thisis described in detail in Appendix D. The well known Newton-
Raphson method is not feasible for the type of Eq. (4.1) since it is highly divergent.
The analytical or numerical differentiation with respect to the unknown parameter
a (&) is necessary in the case of Newton-Raphson method. For Mueller's
iterative technique, one has to specify the range of the unknown parameter a (§).
The boundaries of this range should be specified in such a way that they satisfy
the requirement mentioned in Appendix D. The results converge in about five
iterations.

The procedure used in the solution of Eqs. (4.1), (4.2), and (4.6) is
summarized bel ow:

(1) Assume that the pressure gradient parameter A (given by Eq. (4.10)
remains constant over the entire nody.

(2) Calculate II from similarity solutions (i .e., by neglecting the primed
quantities a', b', etc.,)

(3) Find the pressure distribution from Eq. (4.6).

(4) Determine the pressure gradient parameter and its derivative from
Eqs. (4.7) and (4.8) respectively.

(5) Mueller's iterotive technique determines a certain value for the
unknown parameter a (§). Then, obtain the parameter b (§) from Eq. (4.2)
by applying information already obtained.

(6) Check whether or not the obtained parameters a (), b (§), and



A(E) satisfy Eq. (4.1).

(7) 1f Eq. (4.1)is not satisfied, repeat steps (5) and (6) until the results
converge within ‘he stated limits.

(8) Re-calculate II.

(?) Repeat the steps (3) through (8) for every station along the entire
body .

(10) Repeat the steps (3) through (9) using local values of A and Il for
the entire body . This repetition should continue until the pressure distribution
on the body converges to the value in the previous iteration. The results show
that three iterations are adequate for third digit accuracy.

Once the unknown parametersa (€ ), b (§), and A(§) are determined,
it is a straight forward matter to obtain the boundary layer parometers. These
are summarized below for a flat plate in terms of the new variables.

Modified displacement thickness:

* P 2
M2 AT =42 —:’t el I;Z(p;/pw) —ﬁt dz] (4.13)

Because u?
g [+ <] [ -]

4.14
w=Ce 5 (4.14)

= Uy (g)
Mo G =2 Poo (“m) - ]% (4.15)
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Similarly, introducing the heat transfer coefficient
-Q, = C o U (h- hw) (4.16)

Eq. (2.37) becomes

@

3 = _P Uy -1 b (€
M, Ch p1 uw( Pr Sw) z ) % (4.17)

4.3 Cold Plate

The numerical results are calculated for various boundary conditions at
the wall and differen* specific heat ratios. Before accepting the results cotainea
from the above procedure, one should check for two things: The first one is the
effect of the initial starting location. There are two possible approaches for this
problem. One approach is to use the experimental results or analytical solutions
at the initial location. The other alternative is to start arbitrerily at different
locations close to the leading edge by using known similaritv solutions. Fig. 3
shows the results of such a process. Even though the curves start entirely
differently near the leading edge (large values of )Z), they merge into a single
curve very rapidly as X decreases. One should not consider the results valid
beyond the point where the curves depart from each other significantly.

The second one is to check the validity of convergence of the iteration
scheme described under step (10). The pressure distribution calculated for each
effective body shape is shown in Fig. 4. Th= second iteration data and third

iteration data merged into a single curve, thus the convergence is satisfactory.
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The behavior of the parameter a (&) versus X is shown in Fig. 5 for
T. / T, =0.15. The parameter remains essentially constant for a wide range
of X at the leading edge. This implies the validity of the similarity solutions
ot the leading edge. For X less than 20, the parameter drops significant!y,
implying the need either of a local similarity approach, or of a nonsimilar
approach.

The variation of the pressure gradient parameter is shown in Fig. 6 This
parameter exhibits a trend similar to that of parameter a. However, the pressure
gradient parau:ier drops faster in the weak interuction region. The parameter
b is plotted iniig. 7. Compared to the other two parameters, this parameter
varies very slowly along the body. However, the pattern remains the same as the
other two parameters.

The pressure distribution is shown in Fig. 8. The experimental results
from Hall and Golian [105] are also plotted on the same graph. The agreement
with experimental results is better in the weak interaction and in the transition

regions than in the strong interaction region. The similar solutions of Li and

Nagamatsu and the exact solution of 8lottner are also included here for comparison

purposes. The pressure distribution obtained in the present work i's somewhat
higher than the above mentioned available theoretical and experimental results.
The reason for this difference may be due to the fact that only five terms are
considered in the calculation of displacement thickness. For very cold and very
hot plates, the use of more than five terms is desirable.

The distribution of the skin friction coefficient is shown in Fig. 9.

Blottner's solution and the zeroth order strong interaction solution are included for

é8
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comparison purposes. Since the pressure distribution calculated in the present
work is slightly higher, the predicted skin friction coefficient, is also slightly
higher as expecied from Eq. (4.15). The heat transfer distribution is shown in
Fig. 10. The experimental results of Hall and Golian [105] and some other
theoretical results are shown. The agreement is satisfactory.

It may be noted that the experimental data is higher than the present
result even though the predicted pressure distribution is slightly higher. The
reason is as follows. Equation (4.17) indicates that the heat transfer coefficient
is proportional to the pressure distribution but inversely proportional to the
Prandtl number. It is widely accepted that the Prandtl number for real gases is
slightly less than unity. For example, the Prandtl number may be taken as 0.72
for air. The Prandtl number is assumed as unity in the p-esent analysis. The
experimental data most probably represent the case where the Prandt! number is
less than unity. Therefore, the predicted heat transfer distribution is considered
as slightly higher than the available data and anal ytical results.

The dimensionless displacement thickness is shown in Fig. 11. There is
no experimental data available. The approximate equations derived by Cox and
Crabtree [106] (chapters 7 and 8) are used for the purpose ot comparison for both
weak and strong interaction regions as applicable. To interpret these equations

in terms of dimensionless displacement thickness, the following relation is used:
6*
Mp <
A= (4.18)
XE

Since a limited numbe- of terms (five) are used in the calculation of the integrals



70

I], 12, and 13 and comparison is made with only asymptotic solutions, the

agreement is found to be satisfactory.

4.4 Adiakatic Plate

Since there is no heat transfer at the body surface, the energy equation
is dropped from the governing set of equations. The number of unknowns is re~
duced to two (namely a (£ )and A(&)or p, ) as compared to three in the
nievious case. The procedure in solving these equations remains the same. A
considerable amount of simplification is realized, however. The simplified
equations for the flat plate can be obtained by assuming b (5 ) as zero.

The pressure distribution is shown in Fig. 12. Excellent agreement is
cbtained with Kendal and Bertram's [61,62] experimental results. Moulic and
Maslach [72] also conducted experiments in the range of Mach numbers from 5
to 6. The wall-to-stagnation absolute temperature ratio was maintained within
the limits of 0.93 to 0.98. These results are also shown in the same figure. The
data covers the region where the hypersonic interaction parameter is greater than
3.5. Since the strong interaction region may not exist for such a low Mach
number, the results may be interpreted as satisfactory. The zeroth order strong
interaction solution and Blottner's numerical solution are also included in this
figure. The overall agreement is good.

The skin friction distribution is shown in Fig. 13. The agreement with
Li and Nagamatsu zeroth order strong interaction solution is satisfactory. Since
the displacement thickness is higher than in the cold plate case. a sliding scale
is introduced to represent both weak and strong interaction regions on the same

graph. The present result is compared with the solution of Cox and Crabtree [106].
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4.5 Heated Plate

Experimental measurements of surface pressure and heat transfer distributions
are fairly numerous in the literature for adiabatic and cold flat plates. However,
such measurements are not, to the author's knowledge, available for a heated flat
plate. This is probably due to difficulties in simulating the phenomena. There
are, however, quite a few practical situations where the body temperature is
much higher than the stagnation temperature of the flow field. One such situation
is obviously the final phase of a re=entry vehicle. Blottner [39] could not calcuiate
the heated plate example because of the iuck of similarity profiles for this case ar the
initial station. However, this case is investigated with the present approach.

The equations and the procedure essentially remain the same as for the
cold flat plate. The numerical example is done for the case of wall~to=stagnation
temperature ratio of 2.0. The results are shown in Figs. 15 through 18 as pressuie,
skin friction coefficient, heat transfer coefficient, and displacement thickness
distributions. In each of these figures, the results are given for a monoatomic
gas and a diatomic gas when the condition of the plate is heated ( T,/T. = 2.0),
cooled (T, /T, = .15) or adiabatic (T./T, = 1.0).

The pressure, skin friction and heat transfer coefficients, and displacement
thickness are more sensitive to heating than cooling. The effect of cooling the
surface reduces these boundary layer parameters whereas the opposite effect is
true of heating. Similarly, cooling of the surface reduces the strong interaction
region as well as the strong interaction effects between the shock wave and the
boundary layer and has the greatest effect near the leading edge. The results

indicate that a monoatomic gas increases the boundary layer parameters significantly

in comparison to a diatomic gas.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

The compressible laminar boundary layer equations are solved by the
method of steepest descent. The external pressure distribution is calculated
by tangent-wedge formula for two dimensional bodies. Since the hypersonic
boundary layer=inviscid interaction is coupled to the solution of boundary leyer
equations, three resulting coupled equations are solved by an iterative process.

i alysis presented in this study concerns the case of an isothermal
body and .- Prandtl number of unity. To check the validity of the analysis,
numerical iwults are computed for a flat plate. The results are in good agree=
ment with the available theoreis and experimental results. It is found that the
convergence rate of the series for displacement thickness is slower than the
series for the velocity and enthalpy at the edge of the boundary layer. Since
only five terms are used in the calculation of displacement thickness integrals,
the results are frund to be satisfactory. However, use of more than five terms
may yield much better results.

Occasionally, there exists a situation where there is no unique wey of
summing these series. With the exception of this restriction, the method is a
powerful analytical tool, that is easy to apply. Additional study is needed to
understand deeper into the convergence of the series.

The method of solution is not restricted to a particular fluid property or a
particular body. The assumption cf a Prandtl number of unity and of an isothermal

body serve only to reduce considerable amount of algebra involved in the analysis.
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One can relax these assumptions easily without any change in the present method
of approach. The simplicity of the method permits the solution to be obtained on
small computers such as IBM 1130.

The numerical example given in Section IV represents the flat piate in
hypersonic flow. The prcsent method of approach is applicable even to wedges,
compression surfaces or axisymmetrical slender bodies. Analogous to the use of
tangent-wedge formulo for two dimensional bodies, one may use tangent-cone
formula for symmetrical bodies. However, the use of boundary layer=-inviscid

interaction or neglecting the other interactions should be justified.
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APPENDIX A
GENERAL PROCEDURE FOR THE EVALUATION OF THE INTEGRAL
BY THE METHOD OF STEEPEST DESCENT

The integrals are of the form

S exp (-F(n)) ®(n) dn
(o]

where ©(n)is slowly varying and F (N)is a positive function with a stafionary
point at M= 0, where 7N is positive.

The method of steepest descent, or taddle=point methed, is due to Debye
[107] who applied it to the evaluation of Bessel functions of large order. A
detailed account of it is given in Watson [108]. This is exclusively applied fu
boundary layers by Meksyn [27 through 35], Merk [109], and Hayday and Bowles
(102, 103].

To evaluate the integral, put

F(n) =T (A.1)

Invert the expression (A-1) (i.e., write M as a function of T ) and express the
integrand in terms of T

The funziion F (M Yis usually multiplied by a large positive parameter,
and the series expanded in inverse powers of this parameter. In boundary layers,
the large parameter is unity. Therefore, the behavior of F (n)and ®(n) is
very important. In the majority of cases, the expressions cbtained are very

divergent; they are then summed by Euler's transformation.
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APPENDIX B

DERIVATION OF A

The definition of A from Eq. (2.26) can be rewritter as

- d ® '
A= 28 ri In -?] vy B8.1)
Using Eqs. (2.10) and (2.19), A becomes
2i
A L P gk
= Y1 d(p./p) S v, L p 28 dy
I dx 2 e Tt (B8.2)
I S -
v L

Assuming isentropic, perfect gas low for the flow external to the boundary layer,

one can obtain the following relation.

cf + Y;l u? = cz + Y;'l 03
o (8.3)
y=-1
2 _ 2 2 y=1 2 _ 2 —
Wl = T ¢ t T3 Uy = C, -% Y

Differentiating Eq. (B.3) with respect to & and further simplification results in

1 dw o 1 1 46y B.4)
U] dg YM? pm/p] dg
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Therefore, Eq. (B.2) becomes

S " 2i o
1 r |
e Yol 2 d P 3T T B &
Y YM? dx Py :l. v 2i
u, L
(8.5)
Introducing further transformation
z= -:]_—2 (X is defined in Eq. (2.48) ' (8.6)
X .
Equation (B.5) reduces to
. 2i
1 Py
Ne Yzl 2 oo B T B %
Y YM% dz @7 :l. ‘. 2
Uy L

It is important to note that the second term in Eq. (B.7) contributes very little
in hypersonic flow and thus further simplification can be foreseen for high speed

flows.
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APPENDIX C
EULER'S TRANSFORMATION

The transformation is due to Euler [110] who used it to sum apparently
divergent series. It has been extensively applied by Meksyn in his new method
in boundary layer theory.

According to Euler, the sum of a divergent series is the finite numerical
value of the ¢ anvergent expression from which the divergent series is derived.
First, the general form of Euler's transformation will be given. Suppose the

series
© n+l
n R X (C.1)
- n
n=0

converges to S(X) for sufficiently small values of X. Let

X
L

or (C.2)
= .Y
X = 175

Substituting (C.2) instead of X in the series (C.1)and expanding it in

powers of Y, one can obtain

S<X>=°E°‘0 R, v o(1-y) @) (C.3)
-

-

Since



105

(1-v) "D = ) v e iﬂ‘“'_)zgﬂz_)- v2 4 ﬁp*l)(g‘*;?) £+3) 3., ..

%
= § ptm . m (C.4)
m=0 m
Therefore,
S(X) =Y Rp °§ P:lm YP’*’m'H = °Z° Rp E n:ap Ynﬂ-I
= = =N =
p=0 m=0 p~_ n=p (C.5)
Inverting the order of summation, Eq. (C.5) transforms to
sx) =% y™l § on R =% w vy™ (.o
n=0 p=0 n=-p P n=0 n
where
W =% " R
"p0 p F
i.e.,
WO == (\
W] = R0+R
(C.7)
2 2 2
= +
Woa = 0 Ro? 1 Ryt Ry
_ n n
*®
p+tm isabinomial coefficienti.e.,  (p+1) (pt2) .... (ptm)
m!

m
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Equation (C.6) is valid for sufficiently small Y. For large values of X, the
series (C. 1) may become divergent, while series (B.6) is convergent. It then
represents the sum of $(X).

If the transformed series (C.6) is divergent, the transformation is repeated

as shown below

Y = = Z
TV y4 or Y =3 (C.8)

until ¢ convergent expression is obtained.

The aim of Euier's transformation is to eliminate a singularity which was
introduced by the method of expansion, but which does not belong to the function
itself.

Euler also considered the particular case when X =1 (i.e., Y = 1/2)

Now

sy =% r =% w 2°@) (C.9)

n=0 n n=0

The expression (C.9) often times is referred to as Euler's transformation, which

has the following general form.

SX)= & R X =% w y"! (C.10)

- n=0
To elucidate the procedure, consider the series

3 4 5

- 1024x% ¢ ...
()

= 64X " + 256X

S (X) = 1+:>1<x = X - 4X2+ 16X
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For X =1,

S(1) = 1-4+16~-64+256-1024+ ...,

W, = R +R, ==3

R

=
v
n

+2R]+R =9 (C..2)

0 2

3 _ |
17 2 Ry TRy = Ry + 3Ry +3R)+ Ry

= =12+48-64= - 27

+R, = 81

+ 4R3 4

W, =R '+_4R1 + éR

0 2

It is clear that these coefficients can be conveniently obtained in the

following manner by arranging the coefficient of Rn in the table
] -4 16 -64 256 -1024

-3 12 -48 192 ~768

81 -324

243 (C.13)
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where each term in the second row is obtained by taking the algebraic sum of

the two adjacent terms cbove it, similarly for the third tow, etc.

Wo= 1, W;==3, Wy =9, Wy =-27, W, =81, W =-243 (C.14)
Therefore, Eq. (C.9)becomes
= ¢ ] 3 9 27 81 243
S(1) =L R = epm= — + iy e + ...
0 "2 2 _2—3- 2 2° 2
(C.i5)

which is still divergent. Repeating Euler's transformation:

1.3 s Lz 8 4
2 7 8 T3 2 4
-1 3 .S 2 - .81
) 8 1 32 5
1 13 vz
8 16 32 64
A 3 s
73 32 o4
1 -3,
32 o4
- 7T (C.16)
Hence,
11 1 1
S(‘) T T Y e Tt Ted T T o



= .25 - .0625+ .01563 - .00391 + .000977 - .000244 + . . .

The following properties of Euler's transformation should be noted.

(1) 5 cR =c¥ R
n*=0 n n=0 n
(2) ¥ R+W)=% R +% W
=0 " " a=0 " na= "
@3) Rp * Ry *Ry*Ry+ o) = Ry + Ry +Ry*Ry* ...

i.e., if R

0 1 2 2

+R,+R,*+ ..., is summable to R, the series (R.l + Ryt ...) s

(C.17)

summable to (R - RO ). Euler's sum of a series does not change if a finite number

of terms are separated and then added to the sum of the remaining terms; but an

infinite number of zero terms cannot be disregarded without changing the value

of the sum.

Euler's transformation does not always improve the convergence of con=

vergent series. Euler also applied the transformetion to semi-convergent series.

In this case, the subsequent transformations need not be applied from the first

ferm.

In the application of Euler's tiansformation to sum a series, the trans~

formation is applied to a certain number of terms, and the initially convergent
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terms only are retained; the procedure is then repeated fc ' the remaining rerms.
The above procedure gives a better approximation than if the saome number of
transformations are applied to all terms starting from the first one.

The following rules may be noted in applying the transformation:

1. Since only a limited number of terms is usually available, all
terms including zeros, should be retained.

2. The transformation can be started from any term; the best rezuit is
obtained if the last term in the expression is the smallest one, and
the convergence is better for the same number of transfornations.
The final results corresponding to different reasonable combinations
should, however, differ but slightly.

3. Repeated transformations not only improve the convergence but also

slow it down. It is therefore advisable to use only as few transformations

as possible.



APPENDIX D

MULLER'S ITERATIVE TECHNIQUE FOR SOLVING NONLINEAR EQUATIONS

This technique finds o root of the general nonlinear equation f (x) =0
in the range of x from X, to x. Muller's iteration scheme at successive

bisection and inverse parabolic interpolation is used. The procedure ussumes
f(xk)-f(xr) s 0 (>.3)

An iterative step can be described as shown in the following sketch:

f(x)

m



At first, the middle of the interval will be computed.

.
i.e.,

X = -%—(xl< + xr) (D.2)

In case f (xm) . f (xr) < 0, X1 and x_ are interchanged, thus program make

sure that

Fi ). flx) >0 (D.3)

In case, f(xm) > f(xr) ’oX is replaced by X and the sequence is
repeated. If after a specified number of successive bisections f (xm) > f (xr) ,
the error parameter is set equal to two and the procedure returns to the calling
program.

The second bisection steps lead to f (xm) < f (xr) . Thus, one can

compute by inverse parabolic interpolation:

where

X =X
Ax-f(xk). ?a:y:r%‘k) [l+f(xm)

f (xr) - 2f (xm) +f (xk) ‘I

(FoI-F&IT[F&I-F&I] | (0-4)

b4 ] L] L [ A [
This iterative procedure can end if the relative error --;’-‘- is less than

a specified tolerance. If it is not and if done less than a specified number of

iteration sieps, it sets x =x in case f(x) . F(xk) <Oor X, = x and x =X
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incase f(x) . f (xk) > 0 and the procedure starts from the very beginning.

Each iteration step requires two evaluations of f(x) and usually the
procedure guarantees quadratic convergence. However, convergence may fail due
to rounding errors. In this case aiso, the error parameter is set equal to two and
the procedure returns to th  -alling program. Further details can be obtained

from Reference [111].
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